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ABSTRACT: The paper presents an application o the novel methodology or the assessment 
o structures using a semi-probabilistic approach exploiting advanced probabilistic modeling and 
experimental results. The selected existing bridge is represented by a costly inite element model, 
which relects the non-linearity o concrete and the construction process. Due to a signiicant 
computational burden o each simulation, it is not easible to perorm a Monte Carlo simulation 
and a semi-probabilistic approach was thus adopted. In this study, we investigate the possibility 
o a Gram-Charlier expansion described by the irst our central moments eiciently obtained dir-
ectly rom Polynomial Chaos Expansion metamodel together with the uncertainty quantiication 
o input random variables described by a joint probability distribution obtained rom experimen-
tal data combined with prior assumptions rom codes. Obtained results are compared to the 
standard approach assuming a Lognormal probability distribution o structural resistance.

1 INTRODUCTION

Mathematical models o real structures, e.g. bridges, are typically analyzed by computation-
ally expensive non-linear inite element method (NLFEM) relecting material and geometrical 
non-linearity. Non-linear models are not compatible with standard partial saety actors 
(PSF) implemented in Eurocode (CEN 2002) and advanced probabilistic methods should be 
employed. Nonetheless, standard probabilistic design or assessment o structures represented 
by computational models solved by NLFEM is extremely time-consuming and it is usually 
necessary to use semi-probabilistic methods developed or NLFEM. The paper ocuses on the 
semi-probabilistic assessment o concrete structures using simpliied methods.

In the semi-probabilistic approach (Val et al. 1997, Novák & Novák 2021), the resistance o 
structure R is separated (similarly is in PSF by sensitivity actor α), and the design value Rd 

that satisies saety requirements is evaluated, instead o the direct calculation o ailure prob-
ability. The whole process represents the estimation o a quantile satisying the given saety 
requirements under the prescribed simpliying assumptions. The given task is thus simpliied 
to statistical analysis o target probability distribution o resistance (output o the model) – its 
mean value μ, coeicient o variation (CoV) etc. Saety requirements are given by codes in 
orm o the target reliability index β dependent on consequence classes, e.g. β or the ultimate 
limit state, moderate consequences o ailure and a reerence period o 50 years is set at β = 
3.8 according to the Eurocode 1990 (CEN 2002). In this paper, we investigate the role o sim-
pliying assumptions regarding the probability distribution o input variables and resistance 
(output variable).
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The procedure is a combination o the ollowing steps:

• development o NLFEM fnite element model o structure (high-fdelity model, computa-
tionally very expensive);

• stochastic model based on prior knowledge or input random variables;
• Bayesian approach - based on experimental data updating statistics o input random variables;
• development o surrogate model using Polynomial Chaos Expansion (PCE – low fdelity 

model, computationally cheap);
• determination o design value o resistance based on statistical moments o resistance dir-

ectly obtained orm PCE or estimated by Monte Carlo using surrogate model using Gram- 
Charlier expansion.

2 ASSUMPTIONS IN SEMI-PROBABILISTIC APPROACH

Existing simpliied semi-probabilistic methods were developed or an estimation o CoV using 
very low number o samples (ECoV methods), e.g. ECoV by Červenka (Červenka 2013), Taylor 
Series Expansion (Novák & Novák 2020) or recently developed Eigen ECoV (Novák & Novák 
2021). These methods are based on very strict assumptions, which allow to use simple ormulas 
together with a ew numerical simulations (e.g. 2 or ECoV by Červenka or 3 or Eigen ECoV) 
or an estimation o the irst two statistical moments. The mean value μ and variance σ2 are 
urther used to describe an assumed 2-parametric probability distribution o resistance, typically 
Lognormal distribution or Gaussian distribution. Lognormal distribution is moreover recom-
mended as a typical distribution or modeling o resistance in codes (ib 2013, CEN 2002, JCSS 
2001). This has well-justiied rationale: Lognormal distribution is non-negative (relecting real-
ity) and it is ully-described by the irst two statistical moments (computational eiciency). 
However, this paper presents methodology or semi-probabilistic approach or medium-size 
experimental design (ED) 10-100 samples. In that case, it is possible to construct a surrogate 
model suiciently accurate or an estimation o higher statistical moments. Additionally it will 
be shown that it is beneicial to use Bayesian updating o input variables to estimate a realistic 
Rd incorporating real data obtained rom material experiments or input random variables.

2.1  Standard approach

The standard ormula or the estimation o Rd, assuming a Lognormal distribution o R, is

where μR is the mean value, vR is the coeicient o variation (CoV) and αR represents sensitivity 
actor derived rom First Order Reliability Method (FORM); the recommended value is αR = 
0.8 according to Eurocode 1990 (CEN 2002). In this case, it is necessary to estimate only the 
irst two statistical moments μ and σ2. Estimation o statistical moments using ECoV methods is 
based on numerical simulations with speciic quantile o input random variables, e.g. mean 
values and characteristic values o material parameters. Although such an approach is extremely 
eicient, it is also very limited to assumed Lognormal distribution o resistance. There are many 
studies investigating this approach and comparing various ECoV methods (Schlune et al. 2011, 
Bagge 2020, Novák et al. 2022). Although ECoV methods are well-suited or extremely compu-
tational expensive numerical models, their limitations could lead to inaccurate results as prob-
ability distribution o resistance can dier rom Lognormal distribution signiicantly in some 
cases (eg. high non-linearity). Thus the urther paragraphs describe a methodology based on 
Polynomial Chaos and Gram-Charlier Expansions used or estimation o higher statistical 
moments and construction o an artiicial probability distribution or structural resistance.

2.2  Polynomial chaos and gram-charlier expansions

An approximation o cumulative distribution unction (CDF) FR o structural resistance R by 
Gram-Charlier expansion (G-C) is a completely determined by the irst our statistical 

2698



moments obtained here eiciently rom Polynomial Chaos Expansion (PCE). Asssuming that 
it is possible to write probability distribution o R as a perturbation o Gaussian Gaussian 
probability distribution unction (PDF) ϕ. Once the R is normalized to be zero-mean and 
unit-variance, it is possible to write the Gram-Charlier approximation o CDF in the terms o 
its higher central moments (skewness γY and kurtosis κY ) as:

where Hn(r) are probabilists’ Hermite polynomials o n-th order and Φ(r) represents standard 
Gaussian CDF.

It is typically not easible to get higher statistical moments by crude Monte Carlo simula-
tion due to its computational demands, moreover the moments estimated rom samples are 
highly sensitive to outliers. Fortunately, it is possible to get statistical moments analytically in 
case o PCE, which represents the output variable R as a unction gPCE o an another random 
variable ξ called the germ with given distribution and representing the original computational 
model R = g(X) via polynomial expansion. A set o polynomials, orthonormal with respect to 
the probability distribution o the germ, are used as a basis o the Hilbert space o all real- 
valued random variables o inite variance. In the case o X and ξ being vectors containing 
M random variables, the polynomial  ξð Þ is multivariate and it is built up as a tensor product 
o univariate orthogonal polynomials:

where α 2 M is a set o integers called the multi-index corresponding to polynomial orders 
in each term o PCE, βα are deterministic coeicients and α are multivariate orthogonal poly-
nomials. Coeicients βα can be usually obtained by ordinary least squares.

Once a PCE approximation is created, it is possible to obtain statistical moments o 
R analytically, which represents an enormous advantage with respect to this study, as will be 
shown in computationally expensive numerical example. Speciically, the irst statistical 
moment (mean value) is equal to the irst deterministic coeicient o the expansion

Further the variance σ2
Y ¼ Y2  μ2

Y is obtained as a sum o all squared deterministic coe-
icients except the intercept, which represents the mean value:

Higher statistical central moments, skewness γR (3
rd moment) and kurtosis κR (4

th moment), 
can be similarly obtained analytically or Legendre and Hermite polynomials (Novák 2022).

2.3  Bayesian approach

Given some experimental data D or input model parameters, a parameterized model or the 
data (likelihood unction) pðDθÞ, and a prior probability density p(θ) or the model param-
eters, the posterior probability density unction (PDF) pðθDÞ o the model can be identiied 
by Bayesian theorem:
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Although Bayes’ rule looks simple, its eicient evaluation is still challenging and it must be 
calculated numerically, and thus Markov Chain Monte Carlo sampling (MCMC) is employed 
in this paper. For numerical calculation, we use existing algorithm implemented in UQPy pack-
age or Python (Olivier et al. 2020). Such an approach allows updating prior knowledge about 
the material characteristics (Rózsás et al., 2022). In this study, Bayesian approach is employed 
or updating o materials’ statistics (mean and variance) obtained rom codes combining prior 
knowledge and results obtained rom laboratory experiments. Obtained updated statistics o 
input random variables together with prescribed probability distribution unction were urther 
used in Monte Carlo simulation using surrogate model in orm o PCE. Note that evaluation o 
PCE is very ast even or very large number o simulations used or estimation o higher statis-
tical moments. Estimated statistical moments were ultimately used or G-C expansion and an 
estimation o Rd as described in section 2.2.

3 NUMERICAL APPLICATION: POST-TENSIONED CONCRETE BRIDGE

The proposed methodology is applied or the existing post-tensioned concrete bridge with three 
spans. The super-structure o the mid-span anayzed by NLFEM is 19.98 m long with total 
width 16.60 m. In transverse direction, each span is constructed rom 16 preabricated bridge 
girders KA-61 commonly used in Czech Republic. Load is applied according to national annex 
o Eurocode or load-bearing capacity o road bridges by exclusive loading (by six-axial truck).

3.1  Finite element model

The numerical model is created in sotware ATENA Science based on theory o non-linear rac-
ture mechanics (Červenka & Papanikolaou 2008). In order to relect complex behavior o the 
bridge, the numerical model contains three construction phases as illustrated in Figure 1. The 
NLFEM consists o 13,000 elements o hexahedra type in the major part o the volume and tri-
angular ‘PRISM’ elements in the part with complicated geometry. Reinorcement and prestressing 
tendons are represented by discrete 1D elements with geometry according to original documenta-
tion. The numerical model is urther analysed in order to investigate the ultimate limit state 
(ULS) (peak o a load-delection diagram) in order to determine the load-bearing capacity o the 
bridge. Load-delection diagram rom simulation using mean values o input random variables 
can be seen in Figure 2 together with typical crack pattern and highlighted 3 limit states: decom-
pression, the irst occurrence o cracks and ULS represented by collapse o the bridge.

3.2  Stochastic model

The stochastic model contains 4 random material parameters o concrete C50/60: Young’s 
modulus E; compressive strength o concrete c; tensile strength o concrete ct and racture 

Figure 1.  Three construction phases o the bridge mid-span analysed by NLFEM.
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energy G. Characteristic values o E, ct, G were determined rom c according to ormulas 
implemented in the ib Model Code 2010 (ib 2013) – G, E, and prEN 1992-1-1: 2021 (CEN 
2021) – ct. The last random variable P represents prestressing losses according to JCSS: Prob-
abilistic Model Code (JCSS 2001). The stochastic model is summarized in Table 1. Mean 
values and coeicients the o variation were obtained according to prEN 1992-1-1: 2021 
(Annex A) or adjustment o partial actors or materials. Statistical correlation among ran-
dome variables was not considered in this study.

3.3  Results

Once the stochastic model was deined and computational model was developed in ATENA 
Science, it was possible to create 30 realizations o input random vector generated by Latin 
Hypercube Sampling (Iman & Conover 1980, Novák et al. 2014, 2022), which covers the 
whole design domain, and thus it is suitable technique or construction o ED or surrogate 
modeling. Note that each simulation takes approximately 24 hours using standard hardware. 
The PCE is created with maximum polynomial order p = 5 . The whole algorithm o adaptive 
construction o PCE connecting state o art techniques into stand-alone sotware tool can be 
ound in (Novák & Novák 2018). The design values o resistance Rd are determined as 
a quantile o distribution o R with identiied statistical moments and target reliability indices 
βULS = 3.8 according to EN 1990. Additionally, design values are reduced by global saety 
actor relecting model uncertainties γRd

¼ 1:06 introduced originally in ib Model Code 2010. 
Note that we compare three design values obtained by described semi-probabilistic approach: 
i) standard approach assuming Lognormal distribution o R parameterized by the irst two 
statistical moments obtained by PCE; ii) Rd as a quantile o artiicial probability distribution 
constructed by G-C parametrized by the irst our statistical moment obtained by PCE and iii) 
combination o G-C expansion o R and Bayesian updating o input parameters.

Table 1. Stochastic model o the numerical example.

Var. Mean CoV [%] Distrib. Units

c 56 16 Lognormal [MPa]
ct 3.64 22 Lognormal [MPa]
E 36 16 Lognormal [GPa]
G 195 22 Lognormal [Jm2]
P 20 30 Normal [%]

Figure 2.  Design values o resistance obtained by semi-probabilistic approach determined by the 
described methods together with corresponding PDFs.
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Bayesian updating is perormed using artiicially generated data: 20 experiments o concrete 
specimens. Note that artiicially generated data have realistic CoVs o material parameters, 
which were identiied in the previous experimental campaigns (Slowik et al. 2021). Prior distribu-
tion o material characteristic was assumed to be Uniorm and likelihood distribution is selected 
according to Table 1, i.e. distributions provided in codes. Obtained results can be ound in 
Figure 3: each row corresponds to a speciic material characteristic, the irst column shows esti-
mation o mean value and the second column shows estimation o standard deviation. Both col-
umns, the irst and second, show also prior and posterior distribution identiied by Bayesian 
approach. Vertical solid lines corresponds to values assumed by codes, obtained directly rom 
experiments by statistical processing and the Bayesian estimation identiied as a mean value o 
posterior distribution. The very last column shows 5000 samples used in MCMC or estimation 
o posterior distributions. Note that the identiied values are signiicantly dierent in comparison 
to recommended values by codes, but this is dependent on real-lie experimental results.

Once the PCE was created, it was possible to analytically derive statistical moments used 
or Lognormal (irst two statistical moments) and G-C expansion (irst our statistical 
moments). The dierence between these two design values (corresponding to the identical per-
centile) is caused by higher statistical moments. Further, the created PCE was employed as 
computationally cheap surrogate model or crude Monte Carlo simulation with 106 realiza-
tions o input random variables identiied by Bayesian approach. So Bayes G-C expansion 
was based on estimation o irst our statistical moments needed or Gram-Charlier expansion 
by Monte Carlo simulation. Comparison o identiied PDFs together with determined design 
values o resistance Rd can be ound in 4.

Figure 3.  Bayesian estimation o mean μ and standard deviation σ o concrete material characteristics. 
Solid vertical lines show values determined by codes, experiments and Bayesian approach.
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4 CONCLUSIONS

The paper described the advanced semi-probabilistic methodology based on G-C and PCE or 
estimation o higher statistical moments and an approximation o probability distribution o 
structural resistance. Additionally, estimation was urther improved by Bayesian estimation o 
input random variables combining likelihood distributions rom codes with material experi-
ments. The whole methodology was applied or an estimation o design value o resistance o 
existing post-tensioned concrete bridge. It can be seen rom comparison o determined design 
values, that is beneicial to include additional inormation on structural parameters (Bayesian 
approach) as well as higher statistical moments (G-C expansion). Methodology was shown 
using concrete bridge example, exploiting additional experimental data and Bayesian 
approach resulted in less conservative design value here.
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