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ABSTRACT: The paper presents an application of the novel methodology for the assessment
of structures using a semi-probabilistic approach exploiting advanced probabilistic modeling and
experimental results. The selected existing bridge is represented by a costly finite element model,
which reflects the non-linearity of concrete and the construction process. Due to a significant
computational burden of each simulation, it is not feasible to perform a Monte Carlo simulation
and a semi-probabilistic approach was thus adopted. In this study, we investigate the possibility
of a Gram-Charlier expansion described by the first four central moments efficiently obtained dir-
ectly from Polynomial Chaos Expansion metamodel together with the uncertainty quantification
of input random variables described by a joint probability distribution obtained from experimen-
tal data combined with prior assumptions from codes. Obtained results are compared to the
standard approach assuming a Lognormal probability distribution of structural resistance.

1 INTRODUCTION

Mathematical models of real structures, e.g. bridges, are typically analyzed by computation-
ally expensive non-linear finite element method (NLFEM) reflecting material and geometrical
non-linearity. Non-linear models are not compatible with standard partial safety factors
(PSF) implemented in Eurocode (CEN 2002) and advanced probabilistic methods should be
employed. Nonetheless, standard probabilistic design or assessment of structures represented
by computational models solved by NLFEM is extremely time-consuming and it is usually
necessary to use semi-probabilistic methods developed for NLFEM. The paper focuses on the
semi-probabilistic assessment of concrete structures using simplified methods.

In the semi-probabilistic approach (Val et al. 1997, Novak & Novak 2021), the resistance of
structure R is separated (similarly is in PSF by sensitivity factor a), and the design value R,
that satisfies safety requirements is evaluated, instead of the direct calculation of failure prob-
ability. The whole process represents the estimation of a quantile satisfying the given safety
requirements under the prescribed simplifying assumptions. The given task is thus simplified
to statistical analysis of target probability distribution of resistance (output of the model) — its
mean value u, coefficient of variation (CoV) etc. Safety requirements are given by codes in
form of the target reliability index  dependent on consequence classes, e.g. f§ for the ultimate
limit state, moderate consequences of failure and a reference period of 50 years is set at f =
3.8 according to the Eurocode 1990 (CEN 2002). In this paper, we investigate the role of sim-
plifying assumptions regarding the probability distribution of input variables and resistance
(output variable).
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The procedure is a combination of the following steps:

» development of NLFEM finite element model of structure (high-fidelity model, computa-
tionally very expensive);

* stochastic model based on prior knowledge for input random variables;

» Bayesian approach - based on experimental data updating statistics of input random variables;

* development of surrogate model using Polynomial Chaos Expansion (PCE - low fidelity
model, computationally cheap);

+ determination of design value of resistance based on statistical moments of resistance dir-
ectly obtained form PCE or estimated by Monte Carlo using surrogate model using Gram-
Charlier expansion.

2 ASSUMPTIONS IN SEMI-PROBABILISTIC APPROACH

Existing simplified semi-probabilistic methods were developed for an estimation of CoV using
very low number of samples (ECoV methods), e.g. ECoV by Cervenka (Cervenka 2013), Taylor
Series Expansion (Novak & Novak 2020) or recently developed Eigen ECoV (Novak & Novak
2021). These methods are based on very strict assumptions, which allow to use simple formulas
together with a few numerical simulations (e.g. 2 for ECoV by Cervenka or 3 for Eigen ECoV)
for an estimation of the first two statistical moments. The mean value u and variance o are
further used to describe an assumed 2-parametric probability distribution of resistance, typically
Lognormal distribution or Gaussian distribution. Lognormal distribution is moreover recom-
mended as a typical distribution for modeling of resistance in codes (fib 2013, CEN 2002, JCSS
2001). This has well-justified rationale: Lognormal distribution is non-negative (reflecting real-
ity) and it is fully-described by the first two statistical moments (computational efficiency).
However, this paper presents methodology for semi-probabilistic approach for medium-size
experimental design (ED) 10-100 samples. In that case, it is possible to construct a surrogate
model sufficiently accurate for an estimation of higher statistical moments. Additionally it will
be shown that it is beneficial to use Bayesian updating of input variables to estimate a realistic
R, incorporating real data obtained from material experiments for input random variables.

2.1 Standard approach

The standard formula for the estimation of R, assuming a Lognormal distribution of R, is
Ry = ug - exp(—arpvr), (1)

where iy is the mean value, vy is the coefficient of variation (CoV) and ax represents sensitivity
factor derived from First Order Reliability Method (FORM); the recommended value is az =
0.8 according to Eurocode 1990 (CEN 2002). In this case, it is necessary to estimate only the
first two statistical moments x and ¢”. Estimation of statistical moments using ECoV methods is
based on numerical simulations with specific quantile of input random variables, e.g. mean
values and characteristic values of material parameters. Although such an approach is extremely
efficient, it is also very limited to assumed Lognormal distribution of resistance. There are many
studies investigating this approach and comparing various ECoV methods (Schlune et al. 2011,
Bagge 2020, Novak et al. 2022). Although ECoV methods are well-suited for extremely compu-
tational expensive numerical models, their limitations could lead to inaccurate results as prob-
ability distribution of resistance can differ from Lognormal distribution significantly in some
cases (eg. high non-linearity). Thus the further paragraphs describe a methodology based on
Polynomial Chaos and Gram-Charlier Expansions used for estimation of higher statistical
moments and construction of an artificial probability distribution for structural resistance.

2.2 Polynomial chaos and gram-charlier expansions

An approximation of cumulative distribution function (CDF) F of structural resistance R by
Gram-Charlier expansion (G-C) is a completely determined by the first four statistical
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moments obtained here efficiently from Polynomial Chaos Expansion (PCE). Asssuming that
it is possible to write probability distribution of R as a perturbation of Gaussian Gaussian
probability distribution function (PDF) ¢. Once the R is normalized to be zero-mean and
unit-variance, it is possible to write the Gram-Charlier approximation of CDF in the terms of
its higher central moments (skewness y, and kurtosis xy) as:

K,'y*3

Yy
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where H,(r) are probabilists’ Hermite polynomials of n-th order and ®(r) represents standard
Gaussian CDF.

It is typically not feasible to get higher statistical moments by crude Monte Carlo simula-
tion due to its computational demands, moreover the moments estimated from samples are
highly sensitive to outliers. Fortunately, it is possible to get statistical moments analytically in
case of PCE, which represents the output variable R as a function g “* of an another random
variable ¢ called the germ with given distribution and representing the original computational
model R = g(X) via polynomial expansion. A set of polynomials, orthonormal with respect to
the probability distribution of the germ, are used as a basis of the Hilbert space of all real-
valued random variables of finite variance. In the case of X and ¢ being vectors containing
M random variables, the polynomial ¥(¢) is multivariate and it is built up as a tensor product
of univariate orthogonal polynomials:

R=g(X)= Y B0.(0). 3

aeNM
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where o € N¥ is a set of integers called the multi-index corresponding to polynomial orders
in each term of PCE, f,, are deterministic coefficients and ¥, are multivariate orthogonal poly-
nomials. Coefficients /3, can be usually obtained by ordinary least squares.

Once a PCE approximation is created, it is possible to obtain statistical moments of
R analytically, which represents an enormous advantage with respect to this study, as will be
shown in computationally expensive numerical example. Specifically, the first statistical
moment (mean value) is equal to the first deterministic coefficient of the expansion

HR = <Y1> = Fo- (4)
2

Further the variance 63 = (Y?) — 13, is obtained as a sum of all squared deterministic coef-
ficients except the intercept, which represents the mean value:

op = Z B2. ()
o0

Higher statistical central moments, skewness yz (3" moment) and kurtosis xz (4" moment),
can be similarly obtained analytically for Legendre and Hermite polynomials (Novak 2022).

2.3 Bayesian approach

Given some experimental data D for input model parameters, a parameterized model for the
data (likelihood function) p(D|6), and a prior probability density p(@) for the model param-
eters, the posterior probability density function (PDF) p(6|D) of the model can be identified
by Bayesian theorem:

P(DIOP(©O)

riop) ="

(6)
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Although Bayes’ rule looks simple, its efficient evaluation is still challenging and it must be
calculated numerically, and thus Markov Chain Monte Carlo sampling (MCMC) is employed
in this paper. For numerical calculation, we use existing algorithm implemented in UQPy pack-
age for Python (Olivier et al. 2020). Such an approach allows updating prior knowledge about
the material characteristics (Ro6zsas et al., 2022). In this study, Bayesian approach is employed
for updating of materials’ statistics (mean and variance) obtained from codes combining prior
knowledge and results obtained from laboratory experiments. Obtained updated statistics of
input random variables together with prescribed probability distribution function were further
used in Monte Carlo simulation using surrogate model in form of PCE. Note that evaluation of
PCE is very fast even for very large number of simulations used for estimation of higher statis-
tical moments. Estimated statistical moments were ultimately used for G-C expansion and an
estimation of R, as described in section 2.2.

3 NUMERICAL APPLICATION: POST-TENSIONED CONCRETE BRIDGE

The proposed methodology is applied for the existing post-tensioned concrete bridge with three
spans. The super-structure of the mid-span anayzed by NLFEM is 19.98 m long with total
width 16.60 m. In transverse direction, each span is constructed from 16 prefabricated bridge
girders KA-61 commonly used in Czech Republic. Load is applied according to national annex
of Eurocode for load-bearing capacity of road bridges by exclusive loading (by six-axial truck).

3.1 Finite element model

The numerical model is created in software ATENA Science based on theory of non-linear frac-
ture mechanics (Cervenka & Papanikolaou 2008). In order to reflect complex behavior of the
bridge, the numerical model contains three construction phases as illustrated in Figure 1. The
NLFEM consists of 13,000 elements of hexahedra type in the major part of the volume and tri-
angular ‘PRISM’ elements in the part with complicated geometry. Reinforcement and prestressing
tendons are represented by discrete 1D elements with geometry according to original documenta-
tion. The numerical model is further analysed in order to investigate the ultimate limit state
(ULS) (peak of a load-deflection diagram) in order to determine the load-bearing capacity of the
bridge. Load-deflection diagram from simulation using mean values of input random variables
can be seen in Figure 2 together with typical crack pattern and highlighted 3 limit states: decom-
pression, the first occurrence of cracks and ULS represented by collapse of the bridge.

« activating of the pavement
« activating of the concrete among girders

. application of load by
single six-axial truck

Figure 1. Three construction phases of the bridge mid-span analysed by NLFEM.

3.2 Stochastic model

The stochastic model contains 4 random material parameters of concrete C50/60: Young’s
modulus E; compressive strength of concrete f,; tensile strength of concrete f,, and fracture
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energy Gy Characteristic values of E, f.,, G, were determined from f, according to formulas
implemented in the fib Model Code 2010 (fib 2013) — G; E, and prEN 1992-1-1: 2021 (CEN
2021) — f.,. The last random variable P represents prestressing losses according to JCSS: Prob-
abilistic Model Code (JCSS 2001). The stochastic model is summarized in Table 1. Mean
values and coefficients the of variation were obtained according to prEN 1992-1-1: 2021
(Annex A) for adjustment of partial factors for materials. Statistical correlation among ran-
dome variables was not considered in this study.

Table 1. Stochastic model of the numerical example.

Var. Mean CoV [%] Distrib. Units
fe 56 16 Lognormal [MPa]
fer 3.64 22 Lognormal [MPa]
E 36 16 Lognormal [GPa]
Gy 195 22 Lognormal [Jm2]
P 20 30 Normal [%0]

3.3  Results

Once the stochastic model was defined and computational model was developed in ATENA
Science, it was possible to create 30 realizations of input random vector generated by Latin
Hypercube Sampling (Iman & Conover 1980, Novak et al. 2014, 2022), which covers the
whole design domain, and thus it is suitable technique for construction of ED for surrogate
modeling. Note that each simulation takes approximately 24 hours using standard hardware.
The PCE is created with maximum polynomial order p = 5 . The whole algorithm of adaptive
construction of PCE connecting state of art techniques into stand-alone software tool can be
found in (Novak & Novak 2018). The design values of resistance R; are determined as
a quantile of distribution of R with identified statistical moments and target reliability indices
Purs = 3.8 according to EN 1990. Additionally, design values are reduced by global safety
factor reflecting model uncertainties y, = 1.06 introduced originally in fib Model Code 2010.
Note that we compare three design values obtained by described semi-probabilistic approach:
i) standard approach assuming Lognormal distribution of R parameterized by the first two
statistical moments obtained by PCE; ii) R, as a quantile of artificial probability distribution
constructed by G-C parametrized by the first four statistical moment obtained by PCE and iii)
combination of G-C expansion of R and Bayesian updating of input parameters.

Load-Deflection diagram

Load per one wheel [ton

seflection of the beam (midspan) [m

Figure 2. Design values of resistance obtained by semi-probabilistic approach determined by the
described methods together with corresponding PDFs.
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Bayesian updating is performed using artificially generated data: 20 experiments of concrete
specimens. Note that artificially generated data have realistic CoVs of material parameters,
which were identified in the previous experimental campaigns (Slowik et al. 2021). Prior distribu-
tion of material characteristic was assumed to be Uniform and likelihood distribution is selected
according to Table 1, i.e. distributions provided in codes. Obtained results can be found in
Figure 3: each row corresponds to a specific material characteristic, the first column shows esti-
mation of mean value and the second column shows estimation of standard deviation. Both col-
umns, the first and second, show also prior and posterior distribution identified by Bayesian
approach. Vertical solid lines corresponds to values assumed by codes, obtained directly from
experiments by statistical processing and the Bayesian estimation identified as a mean value of
posterior distribution. The very last column shows 5000 samples used in MCMC for estimation
of posterior distributions. Note that the identified values are significantly different in comparison
to recommended values by codes, but this is dependent on real-life experimental results.
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Figure 3. Bayesian estimation of mean  and standard deviation ¢ of concrete material characteristics.
Solid vertical lines show values determined by codes, experiments and Bayesian approach.

Once the PCE was created, it was possible to analytically derive statistical moments used
for Lognormal (first two statistical moments) and G-C expansion (first four statistical
moments). The difference between these two design values (corresponding to the identical per-
centile) is caused by higher statistical moments. Further, the created PCE was employed as
computationally cheap surrogate model for crude Monte Carlo simulation with 106 realiza-
tions of input random variables identified by Bayesian approach. So Bayes G-C expansion
was based on estimation of first four statistical moments needed for Gram-Charlier expansion
by Monte Carlo simulation. Comparison of identified PDFs together with determined design
values of resistance R, can be found in 4.
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4 CONCLUSIONS

The paper described the advanced semi-probabilistic methodology based on G-C and PCE for
estimation of higher statistical moments and an approximation of probability distribution of
structural resistance. Additionally, estimation was further improved by Bayesian estimation of
input random variables combining likelihood distributions from codes with material experi-
ments. The whole methodology was applied for an estimation of design value of resistance of
existing post-tensioned concrete bridge. It can be seen from comparison of determined design
values, that is beneficial to include additional information on structural parameters (Bayesian
approach) as well as higher statistical moments (G-C expansion). Methodology was shown
using concrete bridge example, exploiting additional experimental data and Bayesian
approach resulted in less conservative design value here.

0.010 4 ==== Lognormal distrib. .“’A
=+ (G-C Expansion ..‘_//
0.008 4 —* Bayes G-C Expansion .7'./ /
= 3% £ 7/
; 0.006 I :./" /
a] = - o *
= 0.004 x '/ /
' g 5 7/
Q- s
0.002 o 0
&) “'{/ 7
~
ot v
0.000 ‘__F"‘.“*"'_'Pﬂ' | — I/ T T T T

400 420 440 460 480 500 520 540 560

Resistance [tons]

Figure 4. Design values of resistance obtained by semi-probabilistic approach determined by the
described methods together with corresponding PDFs.
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